

Two section air-water heat pump for heating, cooling and DHW production

SPHERA EVO - B COMFORT SRHME-BC + MDAN-YMI 2.1 - 5.1 RANGE

FECHNICAL BULLE

SIZE	2.1	3.1	4.1	5.1
HEATING CAPACITY KW	4,49	6,32	8,37	10,26
COOLING CAPACITY KW	4,63	6,79	8,53	9,73

Page

- 3 Features and benefits
- 4 Standard unit technical specifications
- 6 Built-in options
- 7 Accessories separately supplied
- 9 General technical data
- 18 Cooling connections
- 19 Electrical connections
- 20 System connections
- 22 Data for the UNI/TS 11300 calculation
- 25 Dimensional drawings

Features and benefits

SPHERA EVO is a specialised autonomous heat pump system for single- and multi-family homes with medium/low and high power consumption.

Is an air-water heat pump system for cooling and producing/storing domestic hot water. The SPHERA EVO system is composed of a latest generation high efficiency outdoors moto-condensing unit connected via refrigerant connections to an indoors unit.

SPHERA EVO BOX

- Box Version
- Integrated 3-way valve for DHW
- Compact dimensions
- Class A+++ Low temperature
- Built-in WiFi for connection to the dedicated APP

SPHERA EVO TOWER

- Tower Version
- Two volumes of DHW 190 and 250 litres
- Class A++ Average temperature
- Class A+ Domestic hot water production
- Built-in WiFi for connection to the dedicated APP

SPHERA EVO Invisible

- Uncased version
- 150 litre DHW storage can be expanded up to 300 litres
- Compact dimensions for easy installation in walls
- Also available in the hybrid version with 24 kW boiler
- Built-in WiFi for connection to the dedicated APP

SPHERA EVO - BC indoor unit

Zinc-Magnesium frame

Supporting frame in Zinc-Magnesium panelling, excellent mechanical characteristics and high resistance to corrosion over time.

Panelling

External panelling in zinc-magnesium sheet, with white paint in RAL 9003 to ensure better resistance to corrosion. Panels that can be easily removed to allow full access to internal components.

Internal exchanger

Direct expansion heat exchanger with INOX AISI 316 stainless steel braze-welded plates. With low refrigerant content and high exchange surface, complete with external anti-condensation thermal insulation 10 mm thick in sintered expanded polypropylene.

Hydronics module

- DC primary circulate pump, vary at variable flow
- Safety flow switch for water flow
- 3-way switching valve of installation or domestic hot water
- Water side safety valve 3bar
- Magnetic dirt separator
- Sustem purge valve
- 8 liter system expansion tank, 1 bar pre-charge
- ABS drain pan

Electrical panel

The electrical panel is located inside the unit and is easily accessible thanks to removable panel. Moreover, a LED on the front panel is connected to check the operating status of the unit.

The capacity section includes:

main power supply terminals.

- The control section includes:
- microprocessor control;
- BMS management;
- daily, weekly temperature set point and start-up/shutdown scheduler;
- anti-legionella function scheduling;
- management busters two zones;
- solar thermal management; .
- management for auxiliary heaters;
- antifreeze protection water side;
- no water flow-rate protection with flow switch;
- interface terminal with graphic display. Inside the electrical panel there are:
- T5 temperature probe for temperature control in DHW storage tanks (length 4.5m and 6mm bulb);
- T1B temperature probe for low temperature area control in the 2 area kit (length 4.5m and 6mm bulb);
- T1 temperature probe for external boiler connection kit (1.6m length and 6mm bulb).

The immersion heater in the DHW storage tanks must not exceed 4 kW.

Standard unit kit:

- Mesh filter for system water
- Copper gas reduction for 4-6 kW external unit connection
- Unit connection fittings
- Key and torx insert for opening and closing unit panels

4

SPHERA EVO outdoor unit

Zinc-Magnesium frame

High strength frame for outstanding durability and excellent mechanical characteristics.

Panelling

Outer panelling made of Zinc-Magnesium sheet metal painted with pantone warm gray 2C to ensure superior corrosion resistance. Each panel can be easily removed to allow full access to internal components.

Rotary DC inverter compressor

Inverter controlled rotary hermetic compressor for constant modulation of the power supplied according to actual needs, ensuring high seasonal efficiency. With a motor protection device for overheating, overcurrents and excessive temperatures of the supply gas. It is installed on anti-vibration mounts and it is equipped with oil charge. The compressor is wrapped by a sound-absorbing hood, that reduces its sound emissions. A guard heater with automatic insertion prevents the refrigerant from diluting the oil when the compressor stops.

EC inverter fan

Axial fan with variable speed control and sickle shaped blades in ABS resin. It is directly coupled to the electronically controlled motor (IP23), which, thanks to brushless technology and the particular power supply, increase its lifespan and reduce consumption. The fan is housed in an aerodynamically shaped nozzle to increase efficiency and minimise noise. It is also fitted with anti-intrusion grid.

External exchanger

Direct expansion finned coil exchanger made with copper pipes mechanically expanded to better adhere to the fin collar. It has a large surface area to improve heat exchange and reduce defrosting in the interest of seasonal efficiency. The fins are made of aluminium with hydrophilic treatment which facilitates the elimination of condensate, further improving defrosting.

Refrigerant circuit

The refrigeration circuit includes:

- Electronic expansion valve
- 4-way cycle inversion valve
- Liquid separator in extraction
- Mechanical filters
- Low pressure pressure switch
- High pressure pressure switch

Built-in options

EH2 Integration electric heater

EH4

EH6

EH9

Integration electric heater in STAINLESS STEEL with 2-4 kW single-phase or 6-9 kW three-phase capacities.

The electric heater can operate both for the system and for the production of domestic hot water in two different modes:

- as an integration, when the heat pump capacity is not enough to fulfil the required set point;
- as a safety element if the heat pump fails;
- 1. The additional electric heater is not an accessory supplied separately, but a construction configuration.
- 1 The configuration with additional electric heater excludes the external boiler connection kit.
- 🛕 Selection of the additional three-phase electric heater changes the voltage of the indoor unit only. The outdoor unit remains with single phase power supply.

1PUM Single pump with larger available head

Configuration involving a pump with a head higher than the standard one. The circulator, with a head of 10.5 m and a direct current power supply, has a variable flow rate and adapts perfectly to the internal logic of the unit.

1. Single pump with increased head is not an accessory supplied separately, but a construction configuration.

KIRE2HX - KIRE2HLX	 2 zones: external kit, high temperature 2 zones: external kit, high temperature + low temperature Distribution module for 2-zone heating systems with compact design (402 mm x 250 mm x h525 mm) and ample versatility for different types of installation. Kit composed of: 1 collector / Black painted separator; 2 circulator; 1 sliding temperature mixing valve (only for the kit KIRE2HL); 1 EPP insulation (front and rear); 1 threaded disc with hermetic sealing cap, 1 lower anti-rotation jig; 1 support bracket module.
	A For the technical data of the hydraulic head of the pumps, please refer to the dedicated section in the HYDRAULIC DATA chapter.
ACIMPX	 System inertial storage tank Inertial storage to be installed outside the unit. Extremely compact, supplied with air vents and support brackets for wall installation. Suitable for all SPHERA EVO sizes, it facilitates operation and helps to fulfil the heat requirement, guaranteeing optimal modulation. It can be installed next to or below the unit, as shown in the figure Kit composed of: 1 ST37.1 steel 40 liter tank 1 Flexible tube from 2 m
	Extremely compact: LENGTH: 440 mm DEPTH: 220 mm HEIGHT: 887 mm
	 Max. operation temperature: 100°C Max. operation pressure: 6 bar Thermally-isolated with EPP 40 g/l Insulation thickness 30 mm Automatic air vent
KCCEX	 External boiler connection kit Kit offering the option to connect the water circuit to an external boiler. The latter, to be provided by the customer, must have a clean ON/OFF contact. The internal logics of SPHERA EVO permit use of the boiler both together with or instead of the heat pump for greater comfort even at the coldest temperatures. Kit composed of: 1 three-way valve with microswitch for ON/OFF activation of the boiler; copper pipes for connection; plastic seals; terminals and cables for electrical connections; kit installation manual.
	 A The external boiler connection kit excludes configuration with additional electric heater. A Check that the boiler pressure drops are compatible with the head of the unit.
DTX	Auxiliary condensate collection tray Outdoor unit The outdoors unit's base is equipped with a discharge for the condensate produced in the winter during defrost cycles, which helps (but does not guarantee) proper discharge of the condensate into the drain. To guarantee proper condensate flow off, in all conditions, use the condensate tray with discharge for connection to the drain sump, following established regulations. The tray also includes an antifreeze heater which prevents freezing of the condensate produced when the outside temperature drops below zero.

ACS200X 200-liter domestic hot water storage tank

ACS2SX 200-liter domestic hot water storage tank with solar coil

- ACS300X 300-liter domestic hot water storage tank
- ACS3SX 300-liter domestic hot water storage tank with solar coil
- ACS500X 500-liter domestic hot water storage tank

ACS5SX 500-liter domestic hot water storage tank with solar coil

Carbon steel tanks with internal vitrification treatment according to DIN 4753-3 and UNI 10025. Complete with magnesium anodic protection, inspection flange, electric heater.

All the tanks have an external insulation in 70 mm rigid polyurethane which allows to reduce heat losses to a minimum and increase efficiency.

		ACS200X	ACS2SX	ACS300X	ACS3SX	ACS500X	ACS5SX
Capacity	[I]	196	194	273	267	475	464
Diameter	[mm]	640	640	640	640	790	790
Height	[mm]	1215	1215	1615	1615	1705	1705
Surface of exchanger	[m ²]	1,5	1,5	1,8	1,8	2,2	2,2
Surface of solar exchanger	[m ²]	/	0,5	/	1,1	\	1,3
Max pressure of hot water	[bar]	10	10	10	10	10	10
Tank energy class	[-]	В	В	В	В	В	В
Storage dispersion	[W]	51	51	63	63	80	80
Electric heater	[kW]	2,0	2,0	2,0	2,0	2,0	2,0

AMRX Rubber antivibration mounts

The rubber antivibration mounts reduce the vibrations produced by the compressor during its operation and are fixed to the base feet.

Performance

SIZE			2.1	3.1	4.1	5.1
HEATING						
Air 7°C - Water 35°C						
Nominal Heating capacity / Max	1	kW	4,49 / 6,92	6,32 / 8,79	8,37 / 11,0	10,26 / 12,3
Total power input	1	kW	0,90	1,32	1,72	2,19
СОР	1		5,01	4,79	4,87	4,68
Water flow-rate	1	l/s	0,22	0,31	0,41	0,48
Nominal available pressure	1	kPa	38,0	46,0	34,0	20,0
Maximum available pressure	1	kPa	67,0	57,0	38,0	20,0
Air -7°C - Water 35°C						
Nominal Heating capacity / Max	2	kW	4,59 / 4,81	5,55 / 5,70	6,46 / 6,71	8,02 / 8,25
otal power input	2	kW	1,50	1,91	2,13	2,69
COP	2	-	3,07	2,90	3,04	2,98
Vater flow-rate	2	l/s	0,23	0,31	0,32	0,40
Iominal available pressure	2	kPa	38,0	46,0	45,0	38,0
laximum available pressure	2	kPa	66,0	57,0	55,0	39,0
Air 7°C - Water 45°C						
Nominal Heating capacity / Max	3	kW	4,14 / 6,40	6,09 / 8,25	8,02 / 10,6	10,3 / 11,9
otal power input	3	kW	1,12	1,66	2,10	2,81
COP	3	-	3,70	3,66	3,82	3,67
Vater flow-rate	3	l/s	0,20	0,29	0,38	0,47
Iominal available pressure	3	kPa	39,0	47,0	37,0	21,0
Aaximum available pressure	3	kPa	69,0	59,0	43,0	21,0
COOLING						
Air 35°C - Water 18°C						
Nominal Cooling capacity / Max	4	kW	4,63 / 7,86	6,79 / 9,30	8,53 / 10,3	9,73 / 11,5
otal power input	4		0,89	1,32	1,71	2,00
ER	4		5,21	5,14	5,00	4,87
Vater flow-rate	4	l/s	0,22	0,32	0,41	0,45
lominal available pressure	4	kPa	38,0	45,0	34,0	27,0
Maximum available pressure	4	kPa	67,0	55,0	38,0	27,0
Air 35°C - Water 7°C			. , .			
Nominal Cooling capacity / Max	5	kW	4,56 / 6,57	6,17 / 7,58	7,39 / 9,09	9,06 / 10,2
otal power input	5	kW	1,31	1,92	2,37	3,01
ER	5	-	3,49	3,21	3,12	3,01
Vater flow-rate	5	l/s	0,22	0,30	0,35	0,41
Nominal available pressure	5		38,0	46,0	37.0	34,0
Maximum available pressure	5	kPa	67,0	58,0	49,0	38,0
Clima Average High temperature H	eat numps					
		L2\\\/	5	£	8	9
Nominal power SCOP	6	kW		6		
	6		3,37	3,37	3,40	3,56
Senerator energy class	<u> </u>		A++ 132	A++ 132	A++133	A++
ls	6	%	A++	A++	133 	140
ystem energy class						
s	6	%	137	137	138	145
Clima Average Low temperature He	at pumps					
lominal power	7	kW	5	6	8	10
SCOP	7		4,73	4,89	4,96	5,04
Generator energy class	7		Д+++	A+++	A+++	Д+++
] <u></u>	7	%	186	192	195	199
System energy class	7		Д+++	A+++	A+++	A+++
<u></u>	7	%	191	197	200	204

1.

2. 3.

4.

5. 6.

User side entering/leaving water temperature 30/35°C, source side air 7°C (U.R. = 85% Heat power data, Total power input and COP in accordance with EN 14511:2018. User side entering/leaving water temperature 30/35°C, source side air 7°C Heat power data, Total power input and COP in accordance with EN 14511:2018. User side entering/leaving water temperature 40/45°C, source side air 7°C Heat power data, Total power input and COP in accordance with EN 14511:2018. User side entering/leaving water temperature 18/23°C, source side air 35°C Heat power data, Total power input and COP in accordance with EN 14511:2018. User side entering/leaving water temperature 18/23°C, source side air 35°C Heat power data, Total power input and COP in accordance with EN 14511:2018. User side entering/leaving water temperature 7/12°C, source side air 35°C Heat power data, Total power input and COP in accordance with EN 14511:2018. The product is conforming with the European ErP Directives, which includes Commission Delegated Regulation (EU) N. 811/2018 and Commission Delegated Regulation N. 813/2013, Clima Average, High Temperature 47/55°C. The product is conforming with the European ErP Directives, which includes Commission Delegated Regulation (EU) N. 811/2018 and Commission Delegated Regulation N. 813/2013, Clima Average, Low Temperature 30/35°C 7. 813/2013, Clima Average, Low Temperature 30/35°C.

* All data calculated with zero elevation gain and equivalent length of 7m.

Construction - Outdoor unit

SIZE			2.1	3.1	4.1	5.1
Characteristics						
Compressor			Rotary	Rotary	Rotary	Rotary
Refrigerant			R-32	R-32	R-32	R-32
Refrigerant charge		kg	1,55	1,55	1,65	1,65
GWP		t _{co2}	675	675	675	675
Equivalent tons of CO2 (*)		t,	1,05	1,05	1,11	1,11
Oil charge			0,46	0,46	0,46	0,46
Type of fan			Axial	Axial	Axial	Axial
Standard air flow rate		m³/h	2860	2860	4750	4750
Outdoors unit sound pressure at 1 metre	1	dB(A)	47	48	48	50
Sound power	1	dB(A)	61	62	63	65
Dimensions						
Length of unit		mm	960	960	1075	1075
Depth of unit		mm	380	380	395	395
Height of unit		mm	860	860	965	965
Operation weight		kg	57	57	67	67

The sound levels are referred to a unit at full load, under nominal test conditions. Data referred to the following conditions: service side exchanger inlet/outlet water 47/55 °C source side exchanger inlet air 7°C. The sound pressure level refers to a distance of 1 m from the external surface of the unit operating in the free field. Sound pressure level determined using the intense metric method (UNI EN ISO 9614-2).

(*) It contains fluorinated greenhouse gases.

Construction - Indoor unit

SIZE			Α
Characteristics			
Maximum circuit pressure		bar	3
System expansion tank	1	I	8
Dimensions			
Length of unit		mm	547
Depth of unit		mm	386
Height of unit		mm	604
Operation weight		kg	52

1. Sufficient volume up to a maximum of 60 litres of system water content.

Hydronic data - Indoor unit + outdoor unit

SIZE			2.1	3.1	4.1	5.1
Characteristics			А	A	А	A
Minimum system water content	1		15	22	28	35
Minimum admitted water flow rate		l/s	0,16	0,16	0,16	0,16
Maximum admitted water flow rate		l/s	0,61	0,61	0,61	0,61

1. The minimum system water charge is the water contained in the system and in the unit when the zone with the smaller water content is demanding service.

Electrical data

Indoor unit - Standard

SIZE		
Power supply 220-240V [~] 50Hz		
F.L.A TOTAL Full load current at max admissible conditions	А	0,50
F.L.I TOTAL Full load power input	kW	0,10
M.I.C Maximum inrush current	A	0,50

Power supply 220-240V ~ 50Hz +/-10%

The units are conforming with the prescriptions of European Standards CEI EN 60335 and EN 60335-2-40

Outdoor unit - Standard

SIZE		2.1	3.1	4.1	5.1
Power supply 220-240V ~ 50Hz					
F.L.A Full load current at max admissible conditions	A	11,3	11,3	16,7	16,7
F.L.I Full load power input at max admissible conditions	kW	2,65	2,65	3,80	3,80
M.I.C - Maximum inrush current	A	11,3	11,3	16,7	16,7

Power supply 220-240V ~ 50Hz +/-10%

The units are conforming with the prescriptions of European Standards CEI EN 60335 and EN 60335-2-40

(*) The electrical consumptions relating to the electric heater refer to that in the DHW storage tank.

🛕 Important: when rating the unit, check that the absorptions are conforming to the utility contract in the country of installation

Unit configured with oversized pump

SIZE		1PUM
Power supply 220-240V ~ 50Hz		
F.L.A Current absorbed by the unit with increased head circulator	A	0,90
F.L.I Power input of the unit with increased head circulator	kW	0,20
M.I.C Unit maximum starting current of the unit with increased head circulator	A	0,90

Power supply 220-240V ~ 50Hz +/-10%

The units are conforming with the prescriptions of European Standards CEI EN 60335 and EN 60335-2-40

Data to be added to the values of the standard indoor unit.

Unit configured with single-phase integration electric heaters

SIZE		EH2	EH4
Power supply 220-240V ~ 50Hz			
F.L.A Current absorbed by the unit with increased head circulator	А	8,70	17,4
F.L.I Power input of the unit with increased head circulator	kW	2,00	4,00
M.I.C Unit maximum starting current of the unit with increased head circulator	A	8,70	17,4

Power supply 220-240V ~ 50Hz +/-10%

The units are conforming with the prescriptions of European Standards CEI EN 60335 and EN 60335-2-40

Data to be added to the values of the standard indoor unit.

Unit configured with three-phase integration heaters

SIZE		EH6	EH9
Power supply 380-415V ~ 50Hz			
F.L.A Current absorbed by the unit with increased head circulator	А	8,60	13,0
F.L.I Power input of the unit with increased head circulator	kW	6,00	9,00
M.I.C Unit maximum starting current of the unit with increased head circulator	A	8,60	13,0

Power supply 380-415V ~ 50Hz +/-6%

The units are conforming with the prescriptions of European Standards CEI EN 60335 and EN 60335-2-40

Data to be added to the values of the standard indoor unit.

External 2 zone kit

SIZE	KI RE2HX - KIRE2HLX	
Power supply 220-240V ~50Hz		
F.L.A Full load current at max admissible conditions	А	0,45
F.L.I Full load power input at max admissible conditions	kW	0,10

Power supply 220-240V $^{\sim}$ 50Hz +/-10%

The units are conforming with the prescriptions of European Standards CEI EN 60335 and EN 60335-2-40

Data to be added to the values of the standard indoor unit.

Storage tanks for domestic hot water

SIZE		ACS200X	ACS2SX	ACS300X	ACS3SX	ACS500X	ACS5SX
Power supply 220-240V ~50Hz							
F.L.A Current absorbed by the electric heater	А	8,70	8,70	8,70	8,70	8,70	8,70
F.L.I Power input of the electric heater	kW	2,00	2,00	2,00	2,00	2,00	2,00
M.I.C. Unit maximum starting current	А	8,70	8,70	8,70	8,70	8,70	8,70

Power supply 220-240V $^{\sim}$ 50Hz +/-10%

The units are conforming with the prescriptions of European Standards CEI EN 60335 and EN 60335-2-40 Data to be added to the values of the standard indoor unit.

The tanks are supplied with immersed electric heater.

Auxiliary drain pan

SIZE		DTX	
Power supply 220-240V ~50Hz			
F.L.A Full load current at max admissible conditions	А	0,40	
F.L.I Full load power input at max admissible conditions	W	80,0	

Power supply 220-240V ~ 50Hz +/-10%

The units are conforming with the prescriptions of European Standards CEI EN 60335 and EN 60335-2-40

Data to be added to the values of the standard indoor unit.

Sound levels outdoor unit

Standard mode

	Sound power level									Sound
SIZE			power level	pressure level						
	63	125	250	500	1000	2000	4000	8000	dB(A)	dB(A)
2.1	67	63	62	57	56	51	44	37	47	61
3.1	68	69	61	58	57	54	47	42	48	62
4.1	74	71	64	59	57	56	52	46	48	63
5.1	79	70	64	62	60	58	54	48	50	65

Sound levels refer to units with full load under nominal test conditions. Data referred to the following conditions:

entering / leaving exchanger water temperature user side 47/55°C source side exchanger air inlet 7°C.

The sound pressure level refers to a distance of 1m from the external surface of the units operating in an open field.

Noise levels are determined using the tensiometric method (UNI EN ISO 9614-2)

Silenced mode

Sound power (E level dB(A)		
	dB(A)	
47	61	
47	62	
47	62	
	level dB(A) 47 47 47 47	

Sound levels refer to units with full load under nominal test conditions.

For maximum capacity delivered in silent mode use a correction factor of 0.8.

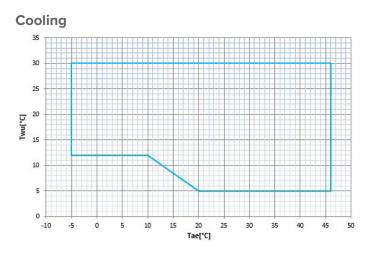
Data referred to the following conditions: entering / leaving exchanger water temperature user side 47/55°C source side exchanger air inlet 7°C. The sound pressure level refers to a distance of 1m from the external surface of the units operating in an open field.

Noise levels are determined using the tensiometric method (UNI EN ISO 9614-2)

Super-silenced mode

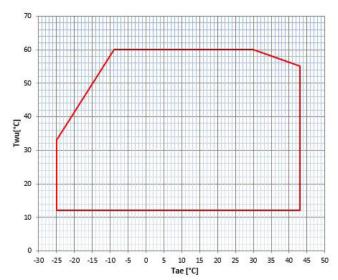
SIZE	Sound power level	Sound pressure level
	dB(A)	dB(A)
2.1	44	58
3.1	45	59
4.1	45	60
5.1	46	61

Sound levels refer to units with full load under nominal test conditions.


For maximum capacity delivered in silent mode use a correction factor of 0,6

Data referred to the following conditions: entering / leaving exchanger water temperature user side 47/55°C source side exchanger air inlet 7°C.

The sound pressure level refers to a distance of 1m from the external surface of the units operating in an open field.

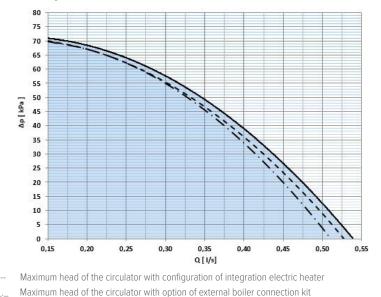

Noise levels are determined using the tensiometric method (UNI EN ISO 9614-2)

Operating limits

Twu [°C] = Exchanger water outlet temperature Tae [°C] = Outdoors exchanger air inlet temperature


Heating

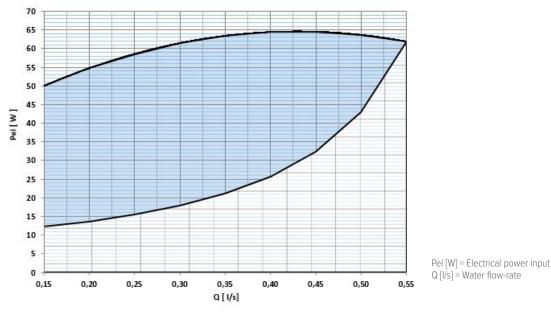
 $\label{eq:constraint} \begin{array}{l} \mbox{Twu} \ [^\circ C] = \mbox{Temperature domestic hot water} \\ \mbox{Tae} \ [^\circ C] = \mbox{Outdoors exchanger air inlet temperature} \end{array}$


In the configuration with the integration electric heater, the extension of the limits varies according to the electrical capacity of the electric heater chosen.

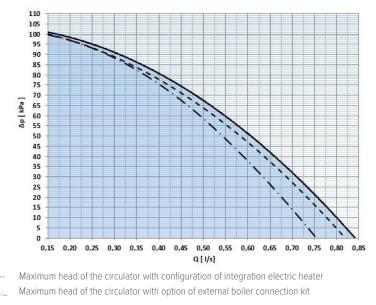
Domestic hot water

Twu $[^{\circ}C]$ = Exchanger water outlet temperature Tae $[^{\circ}C]$ = Outdoors exchanger air inlet temperature

14 QCLIVET



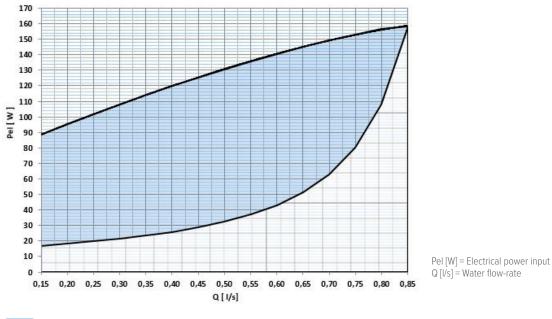
Available pressure of the standard circulator at the unit connections


 $\Delta P [kPa] = Available pressure Q [l/s] = Water flow-rate$

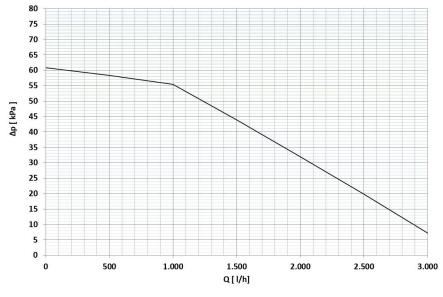
Circulator operating field

Absorption of the standard circulator

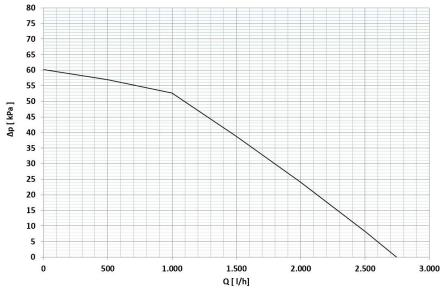
Circulator operating field



Head of the circulator with increased pump at the unit connections


Circulator operating field

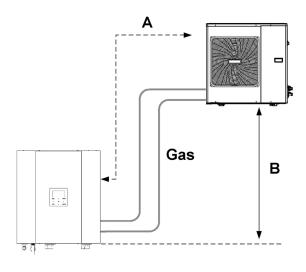
Absorption of the circulator increased


Circulator operating field

Pressure drop for direct booster system circulator

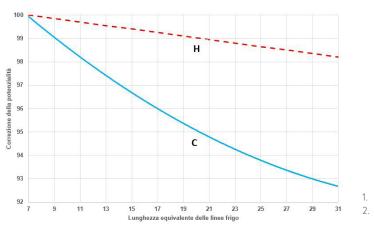
 $\Delta P [kPa] = Available pressure Q [l/h] = Water flow-rate$

Available head for mixed booster system circulator


 $\begin{array}{l} \mbox{Pel} \ [W] = \mbox{Electrical power input} \\ \mbox{Q} \ [l/h] = \mbox{Water flow-rate} \end{array}$

Sizing the refrigerant pipes

Equivalent length of pipes (metres) = Effective length (metres) + Number of bends x K Consider K= 0.3 m per wide radius elbow bend. Consider K= 0.5 m per standard 90° elbow bend.

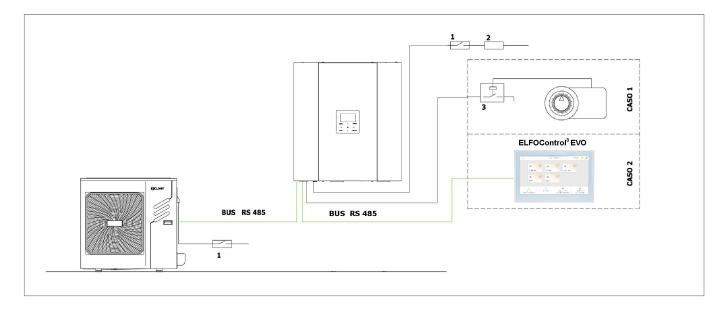

▲ To correctly install the refrigerant pipes and charge the refrigerant gas, refer to the SPHERA MANUAL

SIZE		2.1	3.1	4.1	5.1
Length and height difference of refrigerant pipes					
A - Refrigerant pipe min/max equivalent length	m	3 - 30	3 - 30	3 - 30	3 - 30
C - Maximum level difference of refrigerant piping with external unit above internal unit	m	25	25	25	25
B - Maximum level difference of refrigerant piping with external unit above internal unit	m	25	25	25	25
Diameters of refrigerant pipes					
Gas pipe diameter	inch	5/8"	5/8"	5/8"	5/8"
Fluid line diameter	inch	1/4"	1/4"	3/8"	3/8"
Power supply 220-240V ~50Hz					
R32 - Standard charge for connections up to 15 m	kg	1,55	1,55	1,65	1,65
Equivalent tons of CO2	t _{eq co2}	1,05	1,05	1,11	1,11
Additional charge per metre	kg/m	0,020	0,020	0,038	0,038

Determination of cooling and heating power loss

The equivalent length of the cooling lines results in a loss of cooling and heating power supplied to the circuit and DHW system. The graph shows the amount of this loss of powergh

C = Cooling power efficiency curve

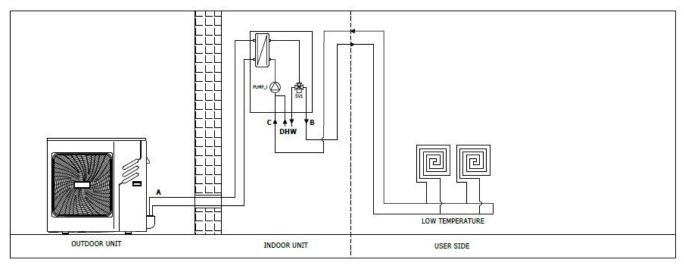

H = Heating power efficiency curve

Electrical connections

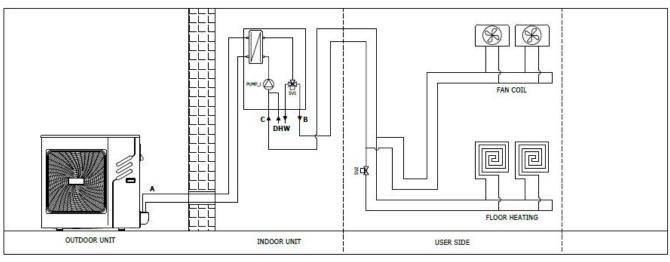
The electrical hookup must be conforming with the local regulations. The hookup must be done by a specialised technician, qualified to work on live equipment.

SPHERA EVO can be controlled with the on-board controller. To operate the unit, you may use: the ELFOControl³ EVO supervision system or normal electromechanical thermostats.

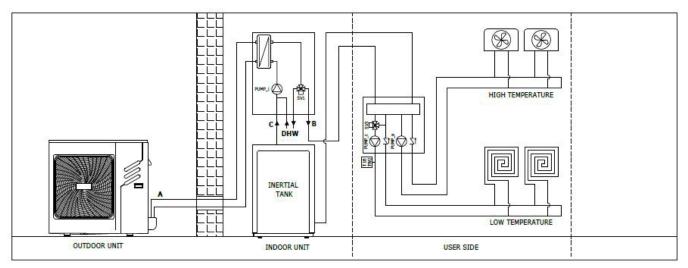
For more information on connections, consult the installation manual.

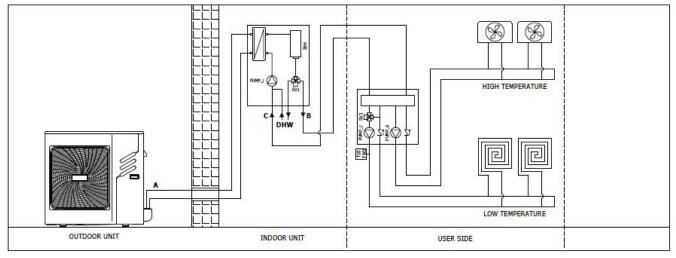


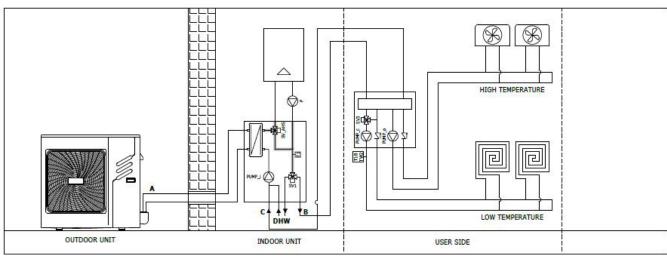
1. Contactor or automatic switch

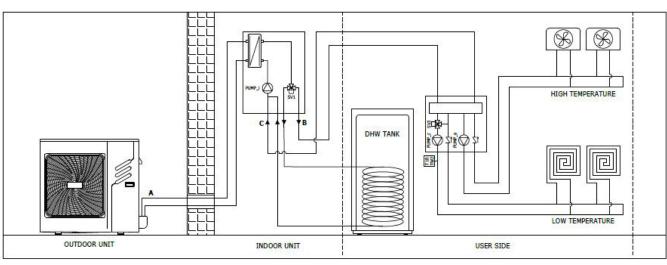

2. 3. Differential circuit breaker

Relè


General description of the system and possible connections


Single Zone


Single Zone (SV2 by the customer)


2 zone

Additional electric heater

Connection to an external boiler

Additional storage tank

Data for the UNI/TS 11300 calculation

Clivet S.p.A. declares that the data to be used for the calculation pursuant to UNI/TS 11300 part 4 of the efficiency of their heat pump are given in the following tables. The data given in this document may be updated without advance notice by the manufacturer when upgrading his product range.

UNI/TS 11300 Part 4

SPHERA EVO 2.1

Data for dete	rmination of COPPL T delivery 20°C	Tdesignh	A	В	С	D
	Те	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		4,59	4,68	4,49	5,25
	CR		1,00	0,60	0,41	0,15
2.1	P	5,21	4,59	2,94	1,78	1,68
	COP (part load)		3,06	4,32	4,94	3,45
	COP (full load)		3,06	4,09	4,96	5,81
	Fcop		1,00	1,06	1,00	0,59
ta to be provi	ded for power and COP under full load	cold source air				
	Те	Tm	-7	2	7	12
		35°C	4,59	4,68	4,49	5,25
	Potenza Termica Φ _{H,HP out} (kW)	45°C	4,29	4,33	4,14	4,84
24		55°C	4,38	4,38	4,09	4,77
2.1		35°C	3,06	4,09	4,96	5,81
	COP	45°C	2,35	3,08	3,68	4,24
		55°C	1,88	2,41	2,84	3,23
DHW Pow	er and COP data under full load			٦	īe 🛛	
	Те	Tm	7	15	20	35
2.1	Heating capacity $\Phi_{_{\rm H,HPout}}$ (kW)	55°C	4,09	5,18	6,05	8,66
∠.1	COP	55°C	2,84	3,45	3,96	5,40

SPHERA EVO 3.1

Data for dete	rmination of COPPL T delivery 20°C	Tdesignh	А	В	С	D
	Те	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		5,61	6,02	6,32	7,37
	CR		1,00	0,57	035	0,13
3.1	Р	6,38	5,61	3,69	2,22	1,62
	COP (part load)		3,12	4,01	4,93	3,13
	COP (full load)		3,12	3,83	4,79	5,54
	Fcop		1,00	1,05	1,03	0,56
ata to be prov	ided for power and COP under full load c	old source air		١	Ге	
	Те	Tm	-7	2	7	12
		35°C	5,61	6,02	6,32	7,37
	Heating capacity ${f \Phi}_{_{H,HPout}}$ (kW)	45°C	5,27	6,48	6,09	7,10
24		55°C	5,20	5,51	5,76	6,71
3.1		35°C	3,12	3,83	4,79	5,54
	COP	45°C	2,28	2,91	3,64	4,17
		55°C	1,92	2,43	2,98	3,38
DHW Pow	ver and COP data under full load			1	Ге	
	Те	Tm	7	15	20	35
24	Heating capacity $\Phi_{_{\rm H,HPout}}$ (kW)	55°C	5,76	7,27	8,52	12,26
3.1	COP	55°C	2,98	3,61	4,14	5,63

Data for the UNI/TS 11300 calculation

SPHERA EVO 4.1

	rmination of COPPL T delivery 20°C	Tdesignh	A	В	С	D
	Те	-10	-7	2	7	12
	PLR	100%	88%	54%	35%	15%
	DC		6,46	6,70	8,37	9,06
	CR		1,00	0,59	0,31	0,12
4.1	Р	7,34	6,46	4,11	2,54	1,54
	COP (part load)		3,03	4,19	5,52	3,58
	COP (full load)		3,03	3,96	4,87	5,73
	Fcop		1,00	1,06	1,13	0,62
Data to be prov	ided for power and COP under full load co	old source air		-	Те	
	Те	Tm	-7	2	7	12
		35°C	6,46	6,70	8,37	9,06
	Heating capacity $\mathbf{\Phi}_{_{\mathrm{H,HP}\mathrm{out}}}$ (kW)	45°C	6,19	6,43	8,02	8,64
		55°C	5,93	6,12	7,60	8,13
4.1		35°C	3,03	3,96	4,87	5,73
	COP	45°C	2,48	3,15	3,82	4,44
		55°C	2,09	2,60	3,11	3,54
DHW Pow	er and COP data under full load			-	Ге	
	Те	Tm	7	15	20	35
	Heating capacity $\Phi_{H,HP out}$ (kW)	55°C	7,60	8,44	9,92	14,35
4.1	СОР	55°C	3,11	3,83	4,30	5,48
Data for deter	rmination of COPPL T delivery 20°C	Tdesignh	A	В	С	D
	Те	-10	-7	2	7	12
			-7 88%	2		
	Те	-10			7	12
	Te PLR	-10	88%	54%	7 35%	12 15%
5.1	Te PLR DC	-10	88% 8,23	54% 9,46	7 35% 10,26	12 15% 11,85
5.1	Te PLR DC CR	-10 100%	88% 8,23 1,00	54% 9,46 0,53	7 35% 10,26 0,32	12 15% 11,85 0,12
5.1	Te PLR DC CR P	-10 100%	88% 8,23 1,00 8,23	54% 9,46 0,53 5,19	7 35% 10,26 0,32 3,56	12 15% 11,85 0,12 1,87
5.1	Te PLR DC CR P COP (part load)	-10 100%	88% 8,23 1,00 8,23 3,31	54% 9,46 0,53 5,19 4,22	7 35% 10,26 0,32 3,56 6,36	12 15% 11,85 0,12 1,87 4,87
	Te PLR DC CR P COP (part load) COP (full load)	-10 100% 	88% 8,23 1,00 8,23 3,31 3,31	54% 9,46 0,53 5,19 4,22 3,85 1,10	7 35% 10,26 0,32 3,56 6,36 4,68	12 15% 11,85 0,12 1,87 4,87 5,45
	Te PLR DC CR P COP (part load) COP (full load) Fcop	-10 100% 	88% 8,23 1,00 8,23 3,31 3,31	54% 9,46 0,53 5,19 4,22 3,85 1,10	7 35% 10,26 0,32 3,56 6,36 4,68 1,36	12 15% 11,85 0,12 1,87 4,87 5,45
	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co	-10 100% 9,35 Dld source air	88% 8,23 1,00 8,23 3,31 3,31 1,00	54% 9,46 0,53 5,19 4,22 3,85 1,10	7 35% 10,26 0,32 3,56 6,36 4,68 1,36	12 15% 11,85 0,12 1,87 4,87 5,45 0,89
	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co	-10 100% 9,35 Dld source air Tm	88% 8,23 1,00 8,23 3,31 3,31 1,00 -7	54% 9,46 0,53 5,19 4,22 3,85 1,10 2	7 35% 10,26 0,32 3,56 6,36 4,68 1,36 Te 7	12 15% 11,85 0,12 1,87 4,87 5,45 0,89 12
Data to be prov	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co Te	-10 100% 9,35 Did source air Tm 35°C	88% 8,23 1,00 8,23 3,31 3,31 1,00 -7 8,23	54% 9,46 0,53 5,19 4,22 3,85 1,10 2 9,46	7 35% 10,26 0,32 3,56 6,36 4,68 1,36 Te 10,26	12 15% 11,85 0,12 1,87 4,87 5,45 0,89 12 11,85
	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co Te	-10 100% 9,35 Did source air Tm 35°C 45°C	88% 8,23 1,00 8,23 3,31 3,31 1,00 -7 8,23 7,67	54% 9,46 0,53 5,19 4,22 3,85 1,10 2 9,46 9,67	7 35% 10,26 0,32 3,56 6,36 4,68 1,36 Te 10,26 10,30	12 15% 11,85 0,12 1,87 4,87 5,45 0,89 12 11,85 11,87
Data to be prov	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co Te	-10 100% 9,35 01d source air Tm 35°C 45°C 55°C	88% 8,23 1,00 8,23 3,31 3,31 1,00 -7 8,23 7,67 7,28	54% 9,46 0,53 5,19 4,22 3,85 1,10 2 9,46 9,67 8,74	7 35% 10,26 0,32 3,56 6,36 4,68 1,36 Te 10,26 10,26 10,30 9,43	12 15% 11,85 0,12 1,87 4,87 5,45 0,89 12 11,85 11,87 10,84
Data to be prov	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co Te Heating capacity $\Phi_{H,HP out}$ (kW)	-10 100% 9,35 9,35 01d source air Tm 35°C 45°C 55°C 35°C	88% 8,23 1,00 8,23 3,31 3,31 1,00 -7 8,23 7,67 7,28 3,31	54% 9,46 0,53 5,19 4,22 3,85 1,10 2 9,46 9,67 8,74 3,85	7 35% 10,26 0,32 3,56 6,36 4,68 1,36 Te 10,26 10,26 10,26 10,30 9,43 4,68	12 15% 11,85 0,12 1,87 4,87 5,45 0,89 12 11,85 11,85 11,87 10,84 5,45
Data to be prov	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co Te Heating capacity $\Phi_{H,HP out}$ (kW)	-10 100% 9,35 0ld source air Tm 35°C 45°C 55°C 35°C 45°C 45°C	88% 8,23 1,00 8,23 3,31 3,31 1,00 -7 8,23 7,67 7,28 3,31 2,43	54% 9,46 0,53 5,19 4,22 3,85 1,10 2 9,46 9,67 8,74 3,85 3,03 2,53	7 35% 10,26 0,32 3,56 6,36 4,68 1,36 Te 10,26 10,30 9,43 4,68 3,66	12 15% 11,85 0,12 1,87 4,87 5,45 0,89 12 11,85 11,87 10,84 5,45 4,19
Data to be prov	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co Te Heating capacity $\Phi_{H,HP out}$ (kW) COP	-10 100% 9,35 0ld source air Tm 35°C 45°C 55°C 35°C 45°C 45°C	88% 8,23 1,00 8,23 3,31 3,31 1,00 -7 8,23 7,67 7,28 3,31 2,43	54% 9,46 0,53 5,19 4,22 3,85 1,10 2 9,46 9,67 8,74 3,85 3,03 2,53	7 35% 10,26 0,32 3,56 6,36 4,68 1,36 Te 10,26 10,30 9,43 4,68 3,66 3,00	12 15% 11,85 0,12 1,87 4,87 5,45 0,89 12 11,85 11,87 10,84 5,45 4,19
Data to be prov	Te PLR DC CR P COP (part load) COP (full load) Fcop ided for power and COP under full load co Te Heating capacity $\Phi_{H,HP out}$ (kW) COP	-10 100% 9,35 01d source air Tm 35°C 45°C 55°C 35°C 45°C 55°C 55°C	88% 8,23 1,00 8,23 3,31 3,31 1,00 -7 8,23 7,67 7,28 3,31 2,43 2,00	54% 9,46 0,53 5,19 4,22 3,85 1,10 2 9,46 9,67 8,74 3,85 3,03 2,53	7 35% 10,26 0,32 3,56 6,36 4,68 1,36 Te 10,26 10,30 9,43 4,68 3,66 3,00	12 15% 11,85 0,12 1,87 4,87 5,45 0,89 12 11,85 11,87 10,84 5,45 4,19 3,39

Terms and definitions

Tm = Delivery temperature

Tdesignh = A - Average design climate temperature (pursuant to UNI EN 14825)

A, B, C, D = names of the four conditions with which different outdoors air temperatures are associated (Te)

Te = Outdoors air temperature

PLR = part load ratio

DC = power under full load referred to the specified temperatures

CR = heat pump load factor

P = system power demand

COP' (full load) = COP under full load referred to the indicated outdoors air temperatures COP' (partial load) = COP under partial load referred to the indicated outdoors air temperatures

 $\rm fCOP$ = COP correction factor, as follows: COP' (full load) / COP (partial load)HP= heat pump DHW = domestic hot water

CLIVET 23

The specified data refer to the nominal power values under the declared conditions

UNI/TS 11300 Part 3

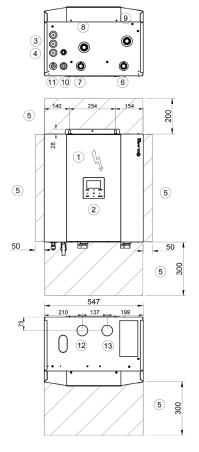
SIZE		Cooling capacity kW				EER		
Test	1	2	3	4	1	2	3	4
	100%	75%	50%	25%	100%	75%	50%	25%
220-240V N 50Hz								
2.1	4,56	3,42	2,29	1,32	3,48	4,33	5,45	6,95
3.1	6,17	4,63	3,09	1,54	3,21	3,96	5,33	7,70
4.1	7,39	5,54	3,70	1,90	3,12	4,10	5,36	6,55
5.1	9,06	6,79	4,53	2,26	3,00	4,24	5,33	7,53

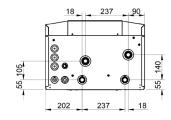
Reference conditions prescribed by UNI/TS 11300-3:

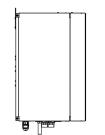
1. External air temperature B.S. 35°C Refrigerated water temperature at the fancoil inlet/outlet 12/7 °C

2. External air temperature B.S. 30°C Refrigerated water temperature at the fancoil outlet /7 °C

3. External air temperature B.S. 25°C Refrigerated water temperature at the fancoil outlet /7 °C

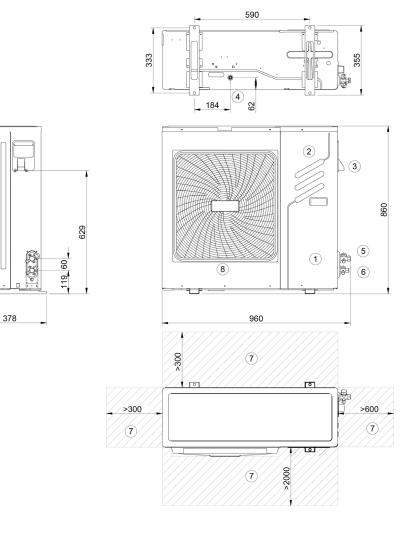

4. External air temperature B.S. 20°C Refrigerated water temperature at the fancoil outlet /7 °C




SPHERA EVO -B Comfort (indoor unit)

DAAHM0001_00 DATA/DATE 26/05/2020

386

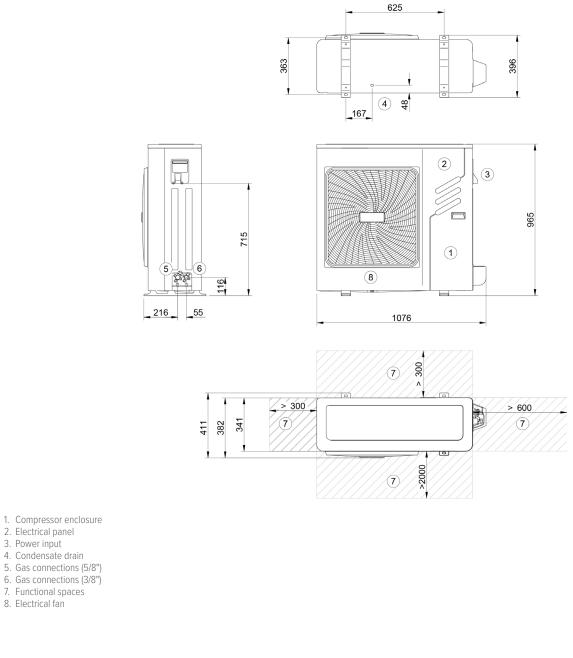

- 1. Electrical panel
- 2. Unit control keypad
- 3. Power input
- 4. Condensate drain
- 5. Functional spaces
- 6. DHW exchanger supply
- 7. DHW exchanger return
- 8. System outlet
- 9. System return
- 10. 5/8" SAE intake connection
- 11. 3/8" SAE liquid connection
- 12. Gas boiler inlet (optional)
- 13. Gas boiler outlet (optional)

SIZE		
Operation weight	kg	50
Shipping weight	kg	58

The presence of optional accessories may result in a substantial variation of the weights shown in the table.

SPHERA EVO (outdoor unit) - 2.1 - 3.1

DAAP80001_REV00 DATA/DATE 20/09/2019


- Compressor enclosure
 Electrical panel
- 3. Power input
- 4. Condensate drain
- 5. Gas connections (5/8")
- 6. Gas connections (3/8")
- 7. Functional spaces
- 8. Electrical fan

SIZE		2.1	3.1
Operation weight	kg	57	57
Shipping weight	kg	68	68

The presence of optional accessories may result in a substantial variation of the weights shown in the table.

SPHERA EVO (outdoor unit) - 4.1 - 5.1

DAAP80002_REV00 DATA/DATE 20/09/2019

SIZE		4.1	5.1
Operation weight	kg	67	67
Shipping weight	kg	79	79

The presence of optional accessories may result in a substantial variation of the weights shown in the table.

3. Power input

8. Electrical fan

FOR OVER 30 YEARS WE HAVE BEEN OFFERING SOLUTIONS TO ENSURE SUSTAINABLE COMFORT AND THE WELL-BEING OF PEOPLE AND THE ENVIRONMENT

sale and assistance

www.clivet.com

CLIVET SPA Via Camp Lonc 25, Z.I. Villapaiera 32032 Feltre (BL) - Italy Tel. +39 0439 3131 - Fax +39 0439 313300 info@clivet.it

